On essential selfadjointness, distinguished selfadjoint extension and essential spectrum of Dirac operators with matrix valued potentials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectrum and essential spectrum of linear combinations of composition operators on the Hardy space H2

Let -----. For an analytic self-map ---  of --- , Let --- be the composition operator with composite map ---  so that ----. Let ---  be a bounded analytic function on --- . The weighted composition operator ---  is defined by --- . Suppose that ---  is the Hardy space, consisting of all analytic functions defined on --- , whose Maclaurin cofficients are square summable. .....

متن کامل

Absolutely Continuous Spectrum of Dirac Operators with Square Integrable Potentials

We show that the absolutely continuous part of the spectral function of the one-dimensional Dirac operator on a half-line with a constant mass term and a real, square-integrable potential is strictly increasing throughout the essential spectrum (−∞,−1] ∪ [1,∞). The proof is based on estimates for the transmission coefficient for the full-line scattering problem with a truncated potential and a ...

متن کامل

Supersymmetry and Schrödinger-type operators with distributional matrix-valued potentials

Building on work on Miura’s transformation by Kappeler, Perry, Shubin, and Topalov, we develop a detailed spectral theoretic treatment of Schrödinger operators with matrix-valued potentials, with special emphasis on distributional potential coefficients. Our principal method relies on a supersymmetric (factorization) formalism underlying Miura’s transformation, which intimately connects the tri...

متن کامل

Measure of non strict singularity of Schechter essential spectrum of two bounded operators and application

In this paper‎, ‎we discuss the essential spectrum of sum of two bounded operators‎ ‎using measure of non strict singularity‎. ‎Based on this new investigation‎, ‎a problem of one-speed neutron transport operator is presented‎.

متن کامل

Spectral estimates for matrix-valued periodic Dirac operators

We consider the first order periodic systems perturbed by a 2N × 2N matrix-valued periodic potential on the real line. The spectrum of this operator is absolutely continuous and consists of intervals separated by gaps. We define the Lyapunov function, which is analytic on an associated N-sheeted Riemann surface. On each sheet the Lyapunov function has the standard properties of the Lyapunov fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences

سال: 1983

ISSN: 0034-5318

DOI: 10.2977/prims/1195182974